Earthquake Forecasting Based on Data Assimilation: Sequential Monte Carlo Methods for Renewal Processes

نویسندگان

  • Maximilian J. Werner
  • Kayo Ide
  • Didier Sornette
چکیده

In meteorology, engineering and computer sciences, data assimilation is routinely employed as the optimal way to combine noisy observations with prior model information for obtaining better estimates of a state, and thus better forecasts, than can be achieved by ignoring data uncertainties. Earthquake forecasting, too, suffers from measurement errors and partial model information and may thus gain significantly from data assimilation. We present perhaps the first fully implementable data assimilation method for earthquake forecasts generated by a point-process model of seismicity. We test the method on a synthetic and pedagogical example of a renewal process observed in noise, which is relevant to the seismic gap hypothesis, models of characteristic earthquakes and to recurrence statistics of large quakes inferred from paleoseismic data records. To address the non-Gaussian statistics of earthquakes, we use sequential Monte Carlo methods, a set of flexible simulation-based methods for recursively estimating arbitrary posterior distributions. We perform extensive numerical simulations to demonstrate the feasibility and benefits of forecasting earthquakes based on data assimilation. In particular, we show that the forecasts based on the Optimal Sampling Importance Resampling (OSIR) particle filter are significantly better than those of a benchmark forecast that ignores uncertainties in the observed event times. We use the marginal data likelihood, a measure of the explanatory

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis and Quantification of Data Assimilation Based on Sequential Monte Carlo Methods for Wildfire Spread Simulation

Data assimilation is an important technique to improve simulation results by assimilating real time sensor data into a simulation model. A data assimilation framework based on Sequential Monte Carlo (SMC) methods for wildfire spread simulation has been developed in previous work. This paper provides systematic analysis and measurement to quantify the effectiveness and robustness of the develope...

متن کامل

Sequential Monte Carlo Methods for High-Dimensional Inverse Problems: A case study for the Navier-Stokes equations

We consider the inverse problem of estimating the initial condition of a partial differential equation, which is only observed through noisy measurements at discrete time intervals. In particular, we focus on the case where Eulerian measurements are obtained from the time and space evolving vector field, whose evolution obeys the two-dimensional Navier-Stokes equations defined on a torus. This ...

متن کامل

Data Assimilation Based on Sequential Monte Carlo Methods for Dynamic Data Driven Simulation

Simulation models are widely used for studying and predicting dynamic behaviors of complex systems. Inaccurate simulation results are often inevitable due to imperfect model and inaccurate inputs. With the advances of sensor technology, it is possible to collect large amount of real time observation data from real systems during simulations. This gives rise to a new paradigm of Dynamic Data Dri...

متن کامل

Earthquake recurrence on the south Hayward fault is most consistent with a time dependent, renewal process

[1] Elastic rebound and stress renewal are important components of earthquake forecasting because if large earthquakes can be shown to be periodic, then rupture probability is time dependent. While renewal models are used in formal forecasts, it has not been possible to exclude the alternate view that repeated large earthquakes can happen in rapid succession without requiring time for stress re...

متن کامل

Likelihood based inference for partially observed renewal processes

This paper is concerned with inference for renewal processes on the real line that are observed in a broken interval. For suchprocesses, the classic history-based approach cannot be used. Instead, we adapt tools from sequential spatial point process theory to propose a Monte Carlo maximum likelihood estimator that takes into account the missing data. Its efficacy is assessed by means of a simul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009